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Recent EWIS Incidents
February 2009 A fire breaks out on-board an A340 Virgin

Atlantic flight en route from Heathrow to Chicago,
which could not be extinguished until after the
plane landed and depowered. Investigators later
discovered problems with the electrical wiring in a
bar unit of the plane that was specifically adapted
for the airline.

January 2008 American Airlines B757 Flight 1738 experienced
smoking in the cockpit caused by arcing within the
windshield heat system resulting in the cockpit
windshield shattering during the emergency
landing.



Chafing is a dominant EWIS failure mechanism
o A frequently occurring type of wiring fault

• FAA reports 55% in one study)
• Navy reports 37% in another study,

o Precursors to more significant problems:
• open and short circuits (cause instrument failure)
• arcing (causes smoking, fires, or worse!)

t See K. Wheeler et. a!_, Aging Aircraft Wiring Fault Detection Survey" for an

overview of these studies and more



Detection of Chafing Damage
• Efforts in hardware development for chafe detection have

been reported, however, little attention has been focused
on detectability and uncertainty

• Initial investigations on detectability suggest that chafing
on unshielded (e.g., power cables) wires is difficult if not
impossible to detect,

• Shielded wire (e.g., high-speed communication cables),
however, may generate a detectable signature.

t "The Invisible Fray: A Critical Analysis of the Use of Reflectometry for Fray

Location," Griffiths et al_, IEEE Sensors Journal, vol. 6, no_ 3, June 2006.

9	 = y^ 4 C°



Chafing in Shielded Electrical Cabling
o Chafe first ablates outer insulation, then shield, leaving

inner conductors intact

Mid
Figure: Chafe progression: 2k, 4k, and 8k cycles beyond short

o Time domain reflectometry (TDR) between active
conductors and the shield is proposed for chafe detection
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3D Commercial Electromagnetic Simulator
v Computer Simulation Technology (CST)'s Microwave

Studio is used
o Wire Types:

• Coaxial Cable
• Twisted Shielded Pair

v Fault Types:
• Rectangular
• Elliptical (pictured)
• Multiple Faults

5 MM



3D Commercial EM Simulator: Representative Data
v Response of twisted shielded pair (TSP) to TDR

interrogation
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Experimental Methods for Chafe Characterization
o There are two fundamental modes of chafing damage

• Wire movement versus stationary object (e-g-, wire rubbing
on a bulkhead)

• Wire movement versus wire movement (e.g., wires in a
bundle abrating each other)

o Two machines have been developed to mimic these
damage mechanisms

• Stationary rod abrasion machine
• Wire-on-wire abrasion machine



Stationary Rod Abrasion Machine

Specifications	 Range	 Optimal Setting
Stroke Length	 1 - 3 cm	 1 cm

Stroke Frequency 1-100 Hz	 10 Hz

• 200g mass used to pressure wire against diamond coated chafing rod

• Average chafe to inner conductor time for TSP is 12k cycles
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Wire-on-Wire Abrasion Machinef
Specifications	 Range Optimal Setting
Stroke Length	 1 cm	 1 cm

Stroke Frequency 1-20 Hz	 10 Hz

• 500g mass used to pressure wire against diamond coated chafing rod

• Average chafe to inner conductor time for TSP is 25k cycles

t Thanks to AFRL for the design



Rod Abrasion Machine: Representative Data
0 Two fault example, one fault fixed and the other growing in size
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Wire-on-Wire Abrasion Machine: Representative Data

0 Growing braid on wire TDR data set
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Overview of Fault Library
v Contains TDR response signals from both simulations and

lab experiments
• Formatted in ASCII and Matlab binary files (.mat)
• Simulated data was collected by growing fault length and

simulating the TDR response
• Experimental data was collected by growing faults under

controlled chafing conditions and measuring the TDR
response

http://ti.arc.nasa.gov/project/wiring/



Why Use Probability Theory for Wire Fault Detection?
o Want to infer variables of interest from noisy reflected

electrical signals:
• fault location(s)
• fault size(s)

o Want to automatically cope with sources of uncertainty:
• electrical noise from equipment and environment
• unknown or uncertain cable parameters (e.g_, dielectric

permittivity, finite conductivity)
• geometric distortions (e-g-, bends, wiggles)
• other reflection sources (e.g., splices)
• unknown number of faults all mixing together

o Specifically, the Bayesian approach provides a systematic
approach to incorporating these effects and more...
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Benefits to the Bayesian Approach
o Clearly represents uncertainty inherent within

measurements
o Includes uncertainty in known prior information or

expertise
u e.g.,"known"' values, such as permittivity of wire insulation,

are often better represented as random variables known
only to a certain accuracy

• Quantifies the uncertainty in the inferred parameters
• Avoids taking direct inverse in finding optimal model

parameters by seeking the estimate that maximizes the
probability of the observed information



Conducting Research in two areas:

o Forward model
development:

• LTI Convolution Models
• Analytical models
• Behavioral models (how

things change)

input	 F (g	 output

o Optimization Techniques to retrieve parameters (find most
likely parameters that explain the observed input and
output).

• Convex Optimization & Expectation Maximization
• Markov Chain Monte-Carlo (MCMC)
• Reversible Jump MCMC

1.



Example: LTI System Model

V, (k)
TDR	 _Oo 61 

Oz	 ON_1
V^(k)

ZL

V,(k) = OoV, (k)+ e1 V; (k- 1)+... + eN- 1 V; (k— N+1)

o The reflection coefficients O k and input V,(k) are given
o Motivated through physics by assuming the line is lossless

and linear time invariant (LT I)
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Example LTI System Model

Vi (k)
TDR	 90	 ^^	 ^2	 6N-1

V (k)

ZL
Vr(k ) = O * Vi(k)

• O E RN is the variable we want to estimate
• F(0) = O x V; = HO represents our model

o H E RN " N , is a convolution matrix
• y = F(0) + v, where v E RN is Gaussian noise

• Prior information is that O is sparse, since chafing damage
is small and localized

9	 = y^ 4 C°



• Likelihood: Prob(ylF, O) x e-2o211F(o)-vllZ
• Prior: Prob(OIF) x e-_k o' aklokl

v A heuristic for prior information that (D is sparse
• Solve: maximize Prob(OIF,y) x Prob (ff,O) Prob((DIF),

which is equivalent to,

N-1

minimize 2Q2 IIF(^) — y 2 + ^ Akl 0kl	 (1)
k=0

v For fixed Ak , (1) is a convex optimization problem, and thus
solvable globally and efficiently, even for large N.

o The Expectation Maximization algorithm can be used to
automatically find the best "tuning" parameters Ak.

Q



Example LTI Convolution Model Estimation Result
v N = 1024, At = 0.04 ns

TDR Data
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Mathematical Predictive Chafe Model: Impedance Layering
o Assume that chafe can be thought of as one or a series of

impedance disturbances
o Once impedance of fault is known, it is relatively

straightforward to find the response of the cable in
frequency or time domains

z^	 z j (^)	 z.



Computing Capacitance and Inductance
0 Capacitance:

7 . 600 = 0
Qr = ff V - Dds

f —FVO • (n x z) dl

0 Inductance:

_ µoE
L^	 C
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Frequency Domain Verification : Comparison with CST MWS

o Predicted Return Loss from a 2 x 10 mm chafe (left) and a
2 x 15 mm chafe (right) in coaxial cable.



Experimental Verification: Chafe in Coaxial Cable
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Conclusions
• Machines — Developed two chafing machines used to

mimic effect of chafing on cables.
• Datasets — Development of publicly accessible electrical

signature fault datasets.
• Algorithms:

• Development of probabilistic Bayesian algorithms for
understanding and characterizing electrical signatures of
faults

• Development of compact and efficient electromagnetics
based forward models for chafe signature



Future Work
o Incorporation of forward models within a Bayesian

framework is underway
• "Real-life" experimental platforms (NASA wind tunnel and

vertical motion simulator) are being used
• Live communication cable interrogation (CAN bus) is being

modeled and contemplated as representative platform.
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